Senin, 08 November 2010

Efek dari Suhu


Halaman ini menjelaskan bahwa perubahaan suhu memperngaruhi laju reaksi. Halaman ini mengansumsikan bahwa Anda telah mengerti prinsip dasar dari teori tumbukan dan distribusi energi molekular Maxwell-Bpltzmann pada gas.
Fakta-fakta
Apa yang sebenarnya terjadi ?
Ketika Anda meningkatkan temperatur laju reaksi akan meningkat. Sebagai perkiraan kasar, sebagian reaksi berlangsung dalam temperatur ruangan, laju reaksi akan berlipatganda setiap kenaikan 10oC suhu.
Perkiraan ini bukan keadaan yang mutlak dan tidak bisa diterapkan pada seluruh reaksi. Bahkan bilapun mendekati benar, laju reaksi akan berlipat ganda tiap 9oC atau 11oC atau tiap suhu tertentu. Angka dari derajat suhu yang diperlukan untuk melipatgandakan laju reaksi akan berubah secara bertahap seiring dengan meningkatnya temperatur.

Beberapa contoh

Beberapa reaksi pada hakekatnya sangat cepat – sebagai contoh, reaksi pernafasan melibatkan ion yang terlarut menjadi zat padat yang tidak larut, atau reaksi antara ion hidrogen dengan asam dan ion hidroksi dari alkali di dalam larutan. Sehingga memanaskan salah satu dari contoh ini tidak memperoleh perbedaan laju reaksi yang cukup bereaksi.
Hampir sebagian besar reaksi yang terjadi baik di labotarium maupun industri akan berlangsung lebih cepat apabila kita memanaskannya.
Penjelasan
Peningkatan frekwensi tumbukan
Partikel hanya dapat bereaksi ketika mereka bertumbukan. Jika Anda memanaskan suatu benda, maka partikel-partikelnya akan bergerak lebih cepat sehingga frekwensi tumbukan akan semakin besar. Hal ini mempercepat laju dari reaksi.
Mari kita lihat lebih jauh secara matematis.
Frekwensi dari tumbukan dua partikel gas berbanding lurus dengan akar dari temperatur kelvin. Jika kita meningkatkan suhu dari 293 K ke 303 K (20oC ke 30oK)

Kita akan memperoleh 1.7 % peningkatan dari tiap kenaikan 10o. Laju reaksi akan meningkat kurang lebih dua kali pada tiap kenaikan suhu – dengan kata lain peningkatan sekitar 100%. Efek dari peningkatan frekwensi tumbukan pada laju reaksi sangatlah kecil. Namun efek yang dihasilkannya sangat berbeda.
Pentingnya aktivasi energi
Tumbuka-tumbukan akan menghasilkan reaksi jika partikel-partikel bertumbukan dengan energi yang cukup untuk memulai suatu reaksi. Energi minimum yang diperlukan disebut dengan reaksi aktivasi energi.
Kita dapat menggambarkan keadaan dari energi aktivasi pada distribusi Maxwell-Boltzmann seperti ini:

Hanya partikel-partikel yang berada pada area di sebelah kanan dari aktivasi energi yang akan bereaksi ketika mereka bertumbukan. Sebagian besar dari partikel tidak memiliki energi yang cukup dan tidak menghasilkan reaksi.
Untuk mempercepat reaksi, kita perlu untuk meningkatkan jumlah dari partikel-partikel energik – partikel-partikel yang memiliki energi sama atau lebih besar dari aktivasi energi. Peningkatan suhu memberi pengaruh yang tepat – merubah bentuk dari diagram.
Diagram berikut, grafik yang berlabel T merupakan suhu awal. Grafik yang berlabelkan T+t adalah suhu yang lebih tinggi.

Jika kita memperhatikan posisi dari aktivasi energi, kita dapat melihat walaupun kurva tidak bergeser terlalu banyak, ada peningkatan yang cukup berarti pada pertikel-partikel energik untuk bertumbukkan dengan energi yang cukup untuk bereaksi.

Ingat bahwa luas dibawah kurva merupakan jumlah dari partikel-partikel. Diagram diatas menggambarkan luas dibawah kurva pada sebelah kanan energ i aktivasi menjadi kurang lebih dua kali lipat lebih luas, oleh karena itu laju reaksi pun berlipatganda.
Kesimpulan
Peningkatan suhu meningkatkan laju reaksi karena bertambahnya jumlah energi tumbukan aktif.

Teori Tumbukan Dan Teori Keadaan Transisi


Teori tumbukan didasarkan atas teori kinetik gas yang mengamati tentang bagaimana suatu reaksi kimia dapat terjadi. Menurut teori tersebut kecepatan reaksi antara dua jenis molekul A dan B sama dengan jumiah tumbukan yang terjadi per satuan waktu antara kedua jenis molekul tersebut. Jumlah tumbukan yang terjadi persatuan waktu sebanding dengan konsentrasi A dan konsentrasi B. Jadi makin besar konsentrasi A dan konsentrasi B akan semakin besar pula jumlah tumbukan yang terjadi.
TEORI TUMBUKAN INI TERNYATA MEMILIKI BEBERAPA KELEMAHAN, ANTARA LAIN :
  • tidak semua tumbukan menghasilkan reaksi sebab ada energi tertentu yang harus dilewati (disebut energi aktivasi = energi pengaktifan) untak dapat menghasilkan reaksi. Reaksi hanya akan terjadi bila energi tumbukannya lebih besar atau sama dengan energi pengaktifan (Ea).
  • molekul yang lebih rumit struktur ruangnya menghasilkan tumbukan yang tidak sama jumlahnya dibandingkan dengan molekul yang sederhana struktur ruangnya.
Teori tumbukan di atas diperbaiki oleh tcori keadaan transisi atau teori laju reaksi absolut. Dalam teori ini diandaikan bahwa ada suatu keadaan yang harus dilewati oleh molekul-molekul yang bereaksi dalam tujuannya menuju ke keadaan akhir (produk). Keadaan tersebut dinamakan keadaan transisi. Mekanisme reaksi keadaan transisi dapat ditulis sebagai berikut:
A + B →   T* –> C + D
dimana:
- A dan B adalah molekul-molekul pereaksi
- T* adalah molekul dalam keadaan transisi
- C dan D adalah molekul-molekul hasil reaksi
SECARA DIAGRAM KEADAAN TRANSISI INI DAPAT DINYATAKAN SESUAI KURVA BERIKUT
energi-pengaktifan
Dari diagram terlibat bahwa energi pengaktifan (Ea) merupakan energi keadaan awal sampai dengan energi keadaan transisi. Hal tersebut berarti bahwa molekul-molekul pereaksi harus memiliki energi paling sedikit sebesar energi pengaktifan (Ea) agar dapat mencapai keadaan transisi (T*) dan kemudian menjadi hasil reaksi (C + D).
CATATAN:
energi pengaktifan (= energi aktivasi) adalah jumlah energi minimum yang dibutuhkan oleh molekul-molekul pereaksi agar dapat melangsungkan reaksi.

Faktor-faktor Yang Mempengaruhi Laju Reaksi


Konsentrasi
Telah diuraikan dalam teori tumbukan, perubahan jumlah molekul pereaksi dapat berpengaruh pada laju suatu reaksi. Kita telah tahu bahwa jumlah mol spesi zat terlarut dalam 1 liter larutan dinamakan konsentrasi molar. Bila konsentrasi pereaksi diperbesar dalam suatu reaksi, berarti kerapatannya bertambah dan akan memperbanyak kemungkinan tabrakan sehingga akan mempercepat laju reaksi.
Bila partikel makin banyak, akibatnya lebih banyak kemungkinan partikel saling bertumbukan yang terjadi dalam suatu larutan, sehingga reaksi bertambah cepat. Perhatikan Gambar 8, apa yang terjadi bila dalam suatu kolam makin banyak perahu yang berjalan? Pasti akan terjadi banyak kemungkinan saling bertabrakan.
Gambar 8
Makin banyak perahu dalam kolam, makin banyak terjadi tabrakan
Luas Permukaan Sentuhan
Suatu reaksi mungkin banyak melibatkan pereaksi dalam bentuk padatan. Perhatikan Gambar 9, bila kita mempunyai kubus dengan ukuran panjang, lebar dan tinggi masing-masing 1cm. Luas permukaan kubus bagian depan 1 cm x 1 cm = 1 cm2. Luas permukaan bagian belakang, kiri, kanan, atas dan bawah, masing-masing juga 1cm2 . Jadi luas permukaan seluruhnya 6 cm2.
Kemudian kubus tersebut kita pecah jadi dua, maka luas permukaan salah satu kubus hasil pecahan tadi adalah 2(1 cm x 1 cm) + 4 (0,5 cm x 1 cm) = 4 cm2. Berarti luas dua kubus hasil pecahan adalah 8 cm2. Apa yang dapat Anda simpulkan mengenai hal ini? Jadi makin kecil pecahan tersebut, luas permukaannya makin besar.
Gambar 9
Bila kubus 1 cm3 dipecah menjadi dua, maka luas permukaan sentuh meningkat dua
kalinya, dan permukaan sentuh tadi bereaksi dengan cairan atau gas. Hal ini merupakan contoh bagaimana penurunan ukuran partikel dapat memperluas permukaan sentuh zat.
Bagaimana pengaruh ukuran kepingan zat padat terhadap laju reaksi? Misalkan, kita mengamati reaksi antara batu gamping dengan larutan asam klorida (HCl). Percobaan dilakukan sebanyak dua kali, masing-masing dengan ukuran keping batu gamping yang berbeda, sedangkan faktor-faktor lainnya seperti massa batu gamping, volume larutan HCl, konsentrasi larutan HCl dan suhu dibuat sama. Dengan demikian, perubahan laju reaksi semata-mata sebagai akibat perbedaan ukuran kepingan batu gamping (kepingan halus dan kepingan kasar). Dalam hal ini, ukuran keping batu gamping kita sebut variabel manipulasi, perubahan laju reaksi (waktu reaksi) disebut variable respon, dan semua faktor lain yang dibuat tetap (sama) disebut variable kontrol.
Mengapa kepingan yang lebih halus bereaksi lebih cepat? Pada campuran pereaksi yang heterogen, reaksi hanya terjadi pada bidang batas campuran yang selanjutnya kita sebut bidang sentuh. Oleh karena itu, makin luas bidang sentuh makin cepat bereaksi. Jadi makin halus ukuran kepingan zat padat makin luas permukaannya.
Pengaruh luas permukaan banyak diterapkan dalam industri, yaitu dengan menghaluskan terlebih dahulu bahan yang berupa padatan sebelum direaksikan. Ketika kita makan, sangat dianjurkan untuk mengunyah makanan hingga lembut, agar proses reaksi di dalam lambung berlangsung lebih cepat dan penyerapan sari makanan lebih sempurna.
Apa hubungannya dengan tumbukan? Makin luas permukaan gamping, makin luas bidang sentuh dengan asam klorida makin besar, sehingga jumlah tumbukannya juga makin besar. Artinya makin kecil ukuran, makin luas permukaannya, makin banyak tumbukan, makin cepat terjadinya reaksi
Suhu
Umumnya kenaikan suhu mempercepat reaksi, dan sebaliknya penurunan suhu memperlambat reaksi. Bila kita memasak nasi dengan api besar akan lebih cepat dibandingkan api kecil. Bila kita ingin mengawetkan makanan (misalnya ikan) pasti kita pilih lemari es, mengapa? Karena penurunan suhu memperlambat proses pembusukan.
Laju reaksi kimia bertambah dengan naiknya suhu. Bagaimana hal ini dapat terjadi? Ingat, laju reaksi ditentukan oleh jumlah tumbukan. Jika suhu dinaikkan, maka kalor yang diberikan akan menambah energi kinetik partikel pereaksi. Sehingga pergerakan partikel-partikel pereaksi makin cepat, makin cepat pergerakan partikel akan menyebabkan terjadinya tumbukan antar zat pereaksi makin banyak, sehingga reaksi makin cepat.
Umumnya kenaikan suhu sebesar 100C menyebabkan kenaikan laju reaksi sebesar dua sampai tiga kali. Kenaikan laju reaksi ini dapat dijelaskan dari gerak molekulnya. Molekul-molekul dalam suatu zat kimia selalu bergerak-gerak. Oleh karena itu, kemungkinan terjadi tabrakan antar molekul yang ada. Tetapi tabrakan itu belum berdampak apa-apa bila energi yang dimiliki oleh molekul-molekul itu tidak cukup untuk menghasilkan tabrakan yang efektif. Kita telah tahu bahwa, energi yang diperlukan untuk menghasilkan tabrakan yang efektif atau untuk menghasilkan suatu reaksi disebut energi pengaktifan.
Energi kinetik molekul-molekul tidak sama. Ada yang besar dan ada yang kecil. Oleh karena itu, pada suhu tertentu ada molekul-molekul yang bertabrakan secara efektif dan ada yang bertabrakan secara tidak efektif. Dengan perkataan lain, ada tabrakan yang menghasilkan reaksi kimia ada yang tidak menghasilkan reaksi kimia. Meningkatkan suhu reaksi berarti menambahkan energi. Energi diserap oleh molekul-molekul sehingga energi kinetik molekul menjadi lebih besar. Akibatnya, molekul-molekul bergerak lebih cepat dan tabrakan dengan dampak benturan yang lebih besar makin sering terjadi. Dengan demikian, benturan antar molekul yang mempunyai energi kinetik yang cukup tinggi itu menyebabkan reaksi kimia juga makin banyak terjadi. Hal ini berarti bahwa laju reaksi makin tinggi.
Katalis
Salah satu cara lain untuk mempercepat laju reaksi adalah dengan jalan menurunkan energi pengaktifan suatu reaksi. Hal ini dapat dilakukan dengan menggunakan katalis. Katalis adalah zat yang dapat meningkatkan laju reaksi tanpa dirinya mengalami perubahan kimia secara permanen. Katalis dapat bekerja dengan membentuk senyawa antara atau mengabsorpsi zat yang direaksikan.
Suatu reaksi yang menggunakan katalis disebut reaksi katalis dan prosesnya disebut katalisme. Katalis suatu reaksi biasanya dituliskan di atas tanda panah, misalnya.
2 KClO3 (g) ———- MnO 2 KCl (s) + 3 O 2 (g)
H2 (g) + Cl2 (g) ——–arang 2 HCl (g)
Secara umum proses sustu reaksi kimia dengan penambahan katalis dapat dijelaskan sebagai berikut. Perhatikan zat A dan zat B yang direaksikan membentuk zat AB dengan zat C sebagai katalis.
A + B ——–AB (reaksi lambat)
Bila tanpa katalis diperlukan energi pengaktifan yang tinggi dan terbentuknya AB lambat. Namun, dengan adanya katalis C, maka terjadilah reaksi: A + C—AC (reaksi cepat).
Energi pengaktifan diturunkan, AC terbentuk cepat dan seketika itu juga AC bereaksi dengan B membentuk senyawa ABC.
AC + B ——ABC (reaksi cepat)
Energi pengaktifan reaksi ini rendah sehingga dengan cepat terbentuk ABC yang kemudian mengurai menjadi AB dan C.
ABC ——–AB + C (reaksi cepat)
Energi pengaktifan reaksi zat A dan zat B tanpa dan dengan katalis ditunjukkan dalam Gambar 10.
Gambar 10
Katalis menyebabkan energi pengaktifan reaksi lebih rendah
Ada dua macam katalis, yaitu katalis positif (katalisator) yang berfungsi mempercepat reaksi, dan katalis negatif (inhibitor) yang berfungsi memperlambat laju reaksi. Katalis positif berperan menurunkan energi pengaktifan, dan membuat orientasi molekul sesuai untuk terjadinya tumbukan.
Sedangkan katalisator dibedakan atas katalisator homogen dan katalisator heterogen.
Katalisator homogen
Katalisator homogen adalah katalisator yang mempunyai fasa sama dengan zat yang dikatalisis. Contohnya adalah besi (III) klorida pada reaksi penguraian hidrogen peroksida menjadi air dan gas oksigen menurut persamaan : 2 H2O2 (l)– FeCl2 H2O (l) + O2 (g)
Katalisator heterogen
Katalisator heterogen adalah katalisator yang mempunyai fasa tidak sama dengan zat yang dikatalisis. Umumnya katalisator heterogen berupa zat padat. Banyak proses industri yang menggunakan katalisator heterogen, sehingga proses dapat berlangsung lebih cepat dan biaya produksi dapat dikurangi.
Banyak logam yang dapat mengikat cukup banyak molekul-molekul gas pada permukannya, misalnya Ni, Pt, Pd dan V. Gaya tarik menarik antara atom logam dengan molekul gas dapat memperlemah ikatan kovalen pada molekul gas, dan bahkan dapat memutuskan ikatan itu. Akibatnya molekul gas yang teradborpsi pada permukaan logam ini menjadi lebih reaktif daripada molekul gas yang tidak terabsorbsi. Prinsip ini adalah kerja dari katalis heterogen, yang banyak dimanfaatkan untuk mengkatalisis reaksi-reaksi gas.
Di beberapa negara maju, kendaraan bermotor telah dilengkapi dengan katalis dari oksida logam atau paduan logam pada knalpotnya sehingga dapat mempercepat reaksi antara gas CO dengan udara. Dalam industri banyak dipergunakan nikel atau platina sebagai katalis pada reaksi hidrogenasi terhadap asam lemak tak jenuh.
Katalis platina, digunakan pada proses Oswald dalam industri asam nitrat, pengubah katalitik pada knalpot kendaraan bermotor
Katalisator enzim
Katalis sangat diperlukan dalam reaksi zat organik, termasuk dalam organisme. Reaksi-reaksi metabolisme dapat berlangsung pada suhu tubuh yang realtif rendah berkat adanya suatu biokatalis yang disebut enzim. Enzim dapat meningkatkan laju reaksi dengan faktor 106 hingga 1018, namun hanya untuk reaksi yang spesifik.
Dalam tubuh kita terdapat ribuan jenis enzim karena setiap enzim hanya dapat mengkatalisis satu reaksi spesifik dalam molekul (substrat) tertentu, Dalam proses katalisis enzim yang digunakan harus sesuai dengan substratnya
Salah satu contoh adalah enzim protease yang dapat digunakan sebagai katalis dalam proses penguraian protein (Gambar 13), namun tidak dapat mengkatalisis penguraian skharosa.
Mekanisme Reaksi
Beberapa reaksi berlangsung melalui pembetukan zat antara, sebelum diperoleh produk akhir. Reaksi yang demikian berlangsung tahap demi tahap. Mekanisme reaksi ialah serangkaian reaksi tahap demi tahap yang terjadi berturut-turut selama proses perubahan reaktan menjadi produk.
Sebagai contoh, reaksi: AB + CD AC + BD
AB dan CD adalah keadaan awal, sedangkan AC dan BD adalah keadaan akhir. Dalam reaksi ini terjadi pemutusan ikatan A-B dan C-D, dan kemudian terbentuk ikatan A-C dan B-D. Proses ini tidak serentak, dapat melalui beberapa tahap, yaitu:
Tahap 1 : AB A + B (cepat)
Tahap 2 : A + CD ACD (lambat)
Tahap 3 : ACD AC + D (cepat)
Tahap 4 : B + D BD (cepat)
Setiap tahap mekanisme reaksi diatas, mempunyai laju tertentu. Tahap yang paling lambat (tahap 2) disebut tahap penentu laju reaksi, karen tahap ini merupakan penghalang untuk laju reaksi secara keseluruhan.
Gelatin dibuat dari buah nanas. Buah Nanas mengandung enzim aktif protease yang dapat menguraikan molekul protein dalam gelatin Artinya, tidak ada pengaruh kenaikan laju tahap 1, 3, dan 4 terhadap reaksi total.

Jumat, 29 Oktober 2010

Hal-hal Yang Mempengaruhi Laju Reaksi

Banyak hal yang mempengaruhi kecepatan reaksi biasanya kecepatan suatu reaksi dipengaruhi oleh beberapa factor sekaligus dan ada kalanya factor-faktor ini saling mempengaruhi satu sama lain.
Beberapa factor yang mempengauhi kecepatan reaksi adalah:
Sifat alami suatu reaksi. Beberapa reaksi memang secara alami lambat atau lebih cepat dibandingkan yang lain. Jumlah spesies yang ikut bereaksi serta keadaan fisik reaktan, ataupun kekompleksan jalanya (mekanisme reaksi) dan factor lain sangat menentukan kecepatan laju reaksi.
Konsentrasi reaktan. Karena persamaan laju reaksi didefinisikan dalam bentuk konsentrsi reaktan maka dengan naiknya konsentrasi maka naik pula kecepatan reaksinya. Artinya semakin tinggi konsentrasi maka semakin banyak molekul reaktan yang tersedia denngan demikian kemungkinan bertumbukan akan semakin banyak juga sehingga kecepatan reaksi meningkat.
Tekanan. Reaksi yang melibatkan gas, kecepatan reaksinya berbanding lurus dengan kenaikan tekanan dimana factor tekanan ini ekuivalen dengan konsentrasi gas.
Orde reaksi. Orde reaksi menentukan seberapa besar konsentrasi reaktan berpengaruh pada kecepatan reaksi.
Temperatur. Temperature berhubungan dengan energi kinetic yang dimiliki molekul-molekul reaktan dalam kecenderungannya bertumbukan. Kenaikan suhu umumnya menyediakan energi yang cukup bagi molekul reaktan untuk meningkatkan tumbukan antar molekul. Akan tetapi tidak semua reaksi dipengaruhi oleh temperature, terdapat reaksi yang independent terhadap temperature yaitu reaksi akan berjalan melambat saat temperature di naikkan seperti reaksi yang melibatkan radikal bebas.
Pelarut. Banyak reaksi yang terjadi dalam larutan dan melibatkan pelarut. Sifat pelarut baik terhadap reaktan, hasil intermediate, dan produknya mempengaruhi laju reaksi. Seperti sifat solvasi pelarut terhadap ion dalam pelarut dan kekuatan interaksi ion dan pelarut dalam pembentukan counter ion.
Radiasi elektromagnetik dan Intensitas Cahaya. Radiasi elektromagnetik dan cahaya merupakan salah satu bentuk energi. Molekul-molekul reaktan dapat menyerap kedua bentuk energi ini sehingga mereka terpenuhi atau meningkatkan energinya sehingga meningkatkan terjadinya tumbukan antar molekul
Katalis. Adanya katalis dalam suatu sitem reaksi akan meningkatkan kecepatan reaksi disebabkan katalis menurunkan energi aktifasi. Dengan penurunan energi aktifasi ini maka energi minimum yang dibutuhkan untuk terjadinya tumbukkan semakin berkurang sehingga mempercepat terjadinya reaksi.
Pengadukan. Proses pengadukan mempengaruhi kecepatan reaksi yang melibatkan sistem heterogen. Seperti reaksi yang melibatkan dua fasa yaitu fasa padatan dan fasa cair seperti melarutkan serbuk besi dalam larutan HCl, dengan pengadukan maka reaksi akan cepat berjalan.

Cara Menentukan Orde reaksi

Diketahui data percobaan laju reaksi sebagai berikut.
2NO + 2H2 –> N2 + 2H2O
Nomor
[NO] (M)
[H2] (M)
Waktu (detik)
1
0.02
0.2
144
2
0.02
0.4
36
3
0.04
0.6
4
Tentukan orde reaksi NO dan orde reaksi H2 !
Jawab :
Pertama-tama kita mencari dulu nilai laju reaksi (v).Nilai v berbanding terbalik dengan waktu (detik).Berarti :
slide13

Pengenalan Kinetika Kimia – Laju Reaksi

kinetika kimia merupakan salah satu cabang ilmu kimia fisika yang mempelajari laju reaksi. Laju reaksi berhubungan dengan pembahasan seberapa cepat atau lambar reaksi berlagsung. Sebagai contoh seberapa cepat reaksi pemusnahan ozon di atmosfer bumi, seberapa cepat reaksi suatu enzim dalam tubuh berlangsung dan sebagainya. Bila terdapat reaksi sebagai berikut:
aA  + bB   ->  cC  + dD
dimana a, b, c, dan d adalah koefisien reaksi dan A, B adalah reaktan dan C, D adalah produk reaksi. Laju reaksi dapat didefinikan sebagai pengurangan reaktan tiap satuan waktu dan derumuskan sebagai:
rumuslajureaksi
atau didefinisikan sebagai penambahan jumlah produk tiap satuan waktu dan dirumuskan sebagai:
ru
tanda minus (-) digunakan pada reaktan disebabkan jumlah reaktan setelah t detik akan lebih kecil dibandingan dengan jumlah reaktan pada to (waktu awal) sehingga untuk mendapatkan hasil v yag bernilai positif maka harus ditambahkan tanda minus. Nilai v yang dicarai dari keempat cara diatas yaitu dengan memakai [A], [B], [C], dan [D] akan memiliki nilai yang sama.
Persamaan Laju Reaksi
Persamaan laju reaksi mendiskripsikan persamaan matematika yang dipegunakan dalam kinetika kimia yang menghubungkan antara laju reaksi dengan konsentrasi reaktan. Untuk reaksi yang sama seperti diatas,
aA  + bB   ->  cC  + dD
maka persamaan laju reaksinya secara umum dapat didefinisikan sebagai berikut:
v = k[A]a[B]b
dimana k adalah konstanta laju reaksi, a disebut orde reaksi terhadap A dan b disebut orde reaksi terhadap B. Penjumlahan a+b meghasilkan orde reaksi total. Persamaan laju reaksi tidak dapat ditentukan secara teoritis akan tetapi bisa ditentukan melalui percobaan kimia/eksperimental. Ada kalanya reaksi hanya dipengaruhi oleh satu reaktan atupun semua reaktan, dan nilai order reaksi bisa sama dengan koefisien reaksi maupun tidak.
Berdasarkan orde reaksi totalnya maka reaksi dibedakan atas reaksi orde 1, orde 2, orde 3 dan sebagainya. Ada kalanya reaksi berorder “nol” yang artinya reaksi tidak dipengaruhi oleh reaktan yang terlibat dalam reaksi, dan biasanya terjadi pada reaksi dekomposisi/ penguraian.
Bila terdapat reaktan yang berbentuk padatan maka reaktan ini tidak dimasukkan dalam persamaan reaksi disebabkan reaksi yang terjadi pada padatan hanya terjadi pada permukaan padatan sehingga konsentrasinya dianggap constant.
Penggabungan laju reaksi dengan persamaan laju reaksi diatas dapat dinyatakan sebagai:
rumuslajureaksi2

Pengertian Laju Reaksi

 
Laju atau kecepatan didefinisikan sebagai jumlah suatu perubahan tiap satuan waktu. Satuan waktu dapat berupa detik, menit, jam, hari atau tahun. Sebagai contoh, seseorang lari dengan kecepatan 10 km/jam. Artinya orang tersebut telah berpindah tempat sejauh 10 km dalam waktu satu jam.
Bagaimanakah cara menyatakan laju dari suatu reaksi? Dalam reaksi kimia, perubahan yang dimaksud adalah perubahan konsentrasi pereaksi atau produk. Seiring dengan bertambahnya waktu reaksi, maka jumlah zat pereaksi akan makin sedikit, sedangkan produk makin banyak. Laju reaksi dinyatakan sebagai laju berkurangnya pereaksi atau laju bertambahnya produk. Satuan konsentrasi yang digunakan adalah molaritas (M) atau mol per liter (mol. L-1). Satuan waktu yang digunakan biasanya detik (dt). Sehingga laju reaksi mempunyai satuan mol per liter per detik (mol. L-1. dt-1 atau M.dt-1).
Pendefinisian laju reaksi lebih lanjut dapat kita perhatikan pada persamaan stoikiometri berikut. a A + b B c C + d D
Bila laju reaksi diungkapkan sebagai berkurangnya pereaksi A atau B dan bertambahnya produk C atau D tiap satuan waktu,

Dengan tanda minus (-) menunjukkan konsentrasi pereaksi makin berkurang, tanda positip (+) menunjukkan konsentrasi produk makin bertambah dan ? menunjukkan perubahan konsentrasi pereaksi atau produk. Sebagai contoh, untuk reaksi:
2H2 (g) + O2 (g) 2 H2O (l)
Laju reaksinya dapat dinyatakan sebagai laju berkurangnya konsentrasi H2 dan O2 atau laju bertambahnya H2O, dan ditulis:

Sesuai dengan persamaan reaksi diatas, setiap 2 mol H2 yang bereaksi (habis), maka bereaksi pula 1 mol O2. Artinya laju berkurangnya H2 adalah dua kali laju berkurangnya O2 Oleh karena itu, laju reaksi dinyatakan sebagai berikut.

Dengan demikian dari persamaan diatas diperoleh

Dengan cara yang sama, persamaan umum (1) dapat berlaku

Dimensi (satuan) bagi laju reaksi adalah konsentrasi/waktu, sehingga umumnya berlaku satuan laju reaksi = mol/liter. Menit atau satuan lain. Untuk fasa gas, satuan konsentrasi akan lebih tepat bila menggunakan tekanan.
Perhatikan Gambar 3, reaksi antara bromin dengan asam formiat yang ditunjukkan dengan persamaan reaksi berikut.
Br2 (aq) + HCOOH (aq) ——- 2H+ (aq) + 2 Br – (aq) + CO2 (g)
Awal reaksi bromin berwarna coklat kemerahan, lama kelamaan menjadi tidak berwarna.

Berkurangnya konsentrasi bromin dalam satu satuan waktu yang ditandai dengan hilangnya warna dari coklat kemerahan menjadi tidak berwarna (dari kiri ke kanan).
Persamaan Laju Reaksi
Tujuan dari mempelajari laju reaksi adalah untuk dapat memprediksi laju suatu reaksi. Hal tersebut dapat dilakukan dengan hitungan matematis melalui hukum laju. Sebagai contoh, pada reaksi:
a A + b B c C + d D
Dimana A dan B adalah pereaksi, C dan D adalah produk dan a,b,c,d adalah koefisien penyetaraan reaksi, maka hukum lajunya dapat dituliskan sebagai berikut:
Laju reaksi = k [A]m [B]n ……………………….(3)
dengan,
k = tetapan laju, dipengaruhi suhu dan katalis (jika ada)
m = orde (tingkat) reaksi terhadap pereaksi A
n = orde (tingkat) reaksi terhadap pereaksi B
[A], [B] = konsentrasi dalam molaritas.
Pangkat m dan n ditentukan dari data eksperimen, biasanya harganya kecil dan tidak selalu sama dengan koefisien a dan b. Semakin besar harga ‘k’ reaksi akan berlangsung lebih cepat. Kenaikan suhu dan penggunaan katalis umumnya memperbesar harga k. Secara formal hukum laju adalah persamaan yang menyatakan laju reaksi v sebagai fungsi dari konsentrasi semua komponen spesies yang menentukan laju reaksi.